BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20251126T140356EST-0862At0Zlt@132.216.98.100 DTSTAMP:20251126T190356Z DESCRIPTION:✒️ TITLE / TITRE\n\nOn the spectral diameter of the complex Gra ssmannian of two-planes\n\n📄 ABSTRACT / RÉSUMÉ \n\nIt is well-known that to any compact symplectic manifold one can associate a 'spectral' pseudome tric $\gamma$ on the universal cover of the Hamiltonian diffeomorphism gro up using Floer theory. I will begin my presentation with a historical over view of this pseudometric\, and will describe its applications. A central question in this subject is whether or not $\gamma$ has finite diameter\, for a given symplectic manifold. In my presentation\, I will explain recen t work (joint with H. Alizadeh\, M. S. Atallah\, J. Shang) which shows the diameter is finite in the case of the complex Grassmannian of two planes $Gr(2\,n)$\, provided that $n$ is a prime number. The proof involves a det our through the quantum Schubert calculus.\n\n📍 PLACE / LIEU \n Hybride - C RM\, Salle / Room 5340\, Pavillon André Aisenstadt\n\nLien ZOOM Link\n DTSTART:20251128T203000Z DTEND:20251128T213000Z SUMMARY:Dylan Cant (Université de Montréal) URL:/sustainability/channels/event/dylan-cant-universi te-de-montreal-369296 END:VEVENT END:VCALENDAR