BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250717T085353EDT-0587EX4CAC@132.216.98.100 DTSTAMP:20250717T125353Z DESCRIPTION:Séminaire LACIM\n\nDecompositions of Grothendieck polynomials\n \nOliver Pechenik\, Rutgers University\n\nSite web : http://www.lacim.uqam .ca\n\nAbstract: \n\nFinding a combinatorial rule for the Schubert structu re constants in the K-theory of flag varieties is a long-standing problem. The Grothendieck polynomials of Lascoux and Schützenberger (1982) serve a s polynomial representatives for K-theoretic Schubert classes\, but no pos itive rule for their multiplication is known outside the Grassmannian case . We contribute a new basis for polynomials\, give a positive combinatoria l formula for the expansion of Grothendieck polynomials in these 'glide po lynomials'\, and provide a positive combinatorial Littlewood-Richardson ru le for expanding a product of Grothendieck polynomials in the glide basis. A specialization of the glide basis recovers the fundamental slide polyno mials of Assaf and Searles (2016)\, which play an analogous role with resp ect to the Chow ring of flag varieties. Additionally\, the stable limits o f another specialization of glide polynomials are Lam and Pylyavskyy's (20 07) basis of multi-fundamental quasisymmetric functions\, K-theoretic anal ogues of I. Gessel's (1984) fundamental quasisymmetric functions. Those gl ide polynomials that are themselves quasisymmetric are truncations of mult i-fundamental quasisymmetric functions and form a basis of quasisymmetric polynomials. (Joint work with D. Searles).\n DTSTART:20161202T183000Z DTEND:20161202T183000Z LOCATION:201\, av. du Président-Kennedy\, LOCAL PK-4323\, Montréal (Qc) H2X 3Y7\, CA\, Pavillon Président-Kennedy SUMMARY:Oliver Pechenik\, Rutgers University URL:/mathstat/channels/event/oliver-pechenik-rutgers-u niversity-264451 END:VEVENT END:VCALENDAR