BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20251102T201122EST-69871HgVWK@132.216.98.100 DTSTAMP:20251103T011122Z DESCRIPTION:Title: Maximizing Laplace eigenvalues with density in higher di mensions\n\nAbstract: We will discuss the problem of maximizing the k-th L aplace eigenvalue with density on a closed Riemannian manifold of dimensio n m ≥ 2. The Euler–Lagrange equation identifies critical densities with th e energy densities of harmonic maps into spheres\, linking spectral optimi zation to harmonic-map theory. Unlike the case m = 2\, where a priori mult iplicity bounds yield existence and regularity\, higher dimensions allow u nbounded multiplicities.\n\nIn the talk\, we will present topological tens or products techniques that handle this setting and prove the existence of maximizing densities for all m ≥ 3. For regularity\, optimizers are smoot h away from a singular set\; when m ≥ 7\, this set can have any prescribed integer dimension up to m − 7\, as we will illustrate with examples on th e m-sphere. These techniques have potential for other eigenvalue-optimizat ion problems in higher dimensions where unbounded multiplicities arise.\n \nReferences: \n\nD. Vinokurov\, Maximizing higher eigenvalues in dimensio ns three and above\, preprint\, arXiv:2506.09328 [math.SP] (2025).\n\nJoin Zoom Meeting\n\nhttps://umontreal.zoom.us/j/89528730384?pwd=IF10Cg8C0Yfog aBlL6F1NboPaQvAaV.1\n\nMeeting ID: 895 2873 0384\n\nPasscode: 077937\n DTSTART:20251031T180000Z DTEND:20251031T190000Z SUMMARY:Denis Vinokurov (Université de Montréal) URL:/mathstat/channels/event/denis-vinokurov-universit e-de-montreal-368611 END:VEVENT END:VCALENDAR