BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250703T190758EDT-0696XfPJcP@132.216.98.100 DTSTAMP:20250703T230758Z DESCRIPTION: \n\nTitle: Coherent sheaves on the commuting stack\n\nAbstract : I will talk about the derived category of the commuting stack of two mat rices\, alternatively of the moduli stack of dimension zero sheaves on the affine space of dimension two. In previous work\, we constructed semiorth ogonal decompositions of this category in smaller categories\, called quas i-BPS categories\, which we believed to be indecomposable\, and we compute d their (localized equivariant or\n\ntopological) K-theory. In the current work\, we compute the quasi-BPS categories. As a corollary\, we prove a c onjecture of Negut about relations between Hecke correspondences\, and a c onjecture of Gorsky-Negut about the generation of the derived category of the commuting stack. Based on previous joint work with Yukinobu Toda\, we obtain a dimension three version of the Bridgeland-King-Reid and Haiman de rived equivalence. This is joint work with Sabin Cautis and Yukinobu Toda (in progress).\n\nLocation: in person at UQAM PK-5675\n\nor online at Zoom meeting 86352363947\n\nhttps://can01.safelinks.protection.outlook.com/?ur l=https%3A%2F%2Fuqam.zoom.us%2Fj%2F86352363947&data=05%7C02%7Cjackie.castr eje%40mcgill.ca%7Cd2fca31f3e514610508b08dccc2612fe%7Ccd31967152e74a68afa9f cf8f89f09ea%7C0%7C0%7C638609711109696751%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiM C4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sda ta=HjQ136udU6LXMpcpqiRMXMVd16mXRGmo4r5p4nDJfvE%3D&reserved=0\n\n \n DTSTART:20240904T190000Z DTEND:20240904T200000Z SUMMARY:Tudor Pădurariu (CNRS-Université Pierre et Marie Curie-Université Paris Diderot) URL:/mathstat/channels/event/tudor-padurariu-cnrs-univ ersite-pierre-et-marie-curie-universite-paris-diderot-359267 END:VEVENT END:VCALENDAR