BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250724T022121EDT-4539ndxtPI@132.216.98.100 DTSTAMP:20250724T062121Z DESCRIPTION:\n \n \n \n TITRE / TITLE\n Trees\, fixed-points and the Cremona gro up\n \n RÉSUMÉ / ABSTRACT\n\n An action of a group on a space is called decen t if every finitely generated subgroup all of whose elements have fixed-po ints has a global fixed-point. An example is the automorphism group of a t ree or a finite product of trees. I will give a sufficient condition for a group acting on a restricted infinite product of trees to be decent. This allows to prove that every finitely generated subgroup of the Cremona gro up of P^2 all of whose elements are algebraic is bounded. Joint work with Anne Lonjou and Christian Urech.\n\n  \n \n \n \n\n DTSTART:20231031T160000Z DTEND:20231031T160000Z LOCATION:Room 920\, Burnside Hall\, CA\, QC\, Montreal\, H3A 0B9\, 805 rue Sherbrooke Ouest SUMMARY:Piotr Przytycki (9IÖÆ×÷³§Ãâ·Ñ) URL:/mathstat/channels/event/piotr-przytycki-mcgill-un iversity-352383 END:VEVENT END:VCALENDAR