BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250918T092106EDT-3698oaVf6h@132.216.98.100 DTSTAMP:20250918T132106Z DESCRIPTION:Quebec Mathematics Sciences Colloquium\n\nTitle: Auto-regressiv e approximations to non-stationary time series\, with inference and applic ations (2023 CRM-SSC Prize Lecture)\n\nAbstract\n Understanding the time-va rying structure of complex temporal systems is one of the main challenges of modern time series analysis. In this talk\, I will demonstrate that a w ide range of short-range dependent non-stationary and nonlinear time serie s can be well approximated globally by a white-noise-driven auto-regressiv e (AR) process of slowly diverging order. Uniform statistical inference of the latter AR structure will be discussed through a class of high-dimensi onal L2 tests. I will further discuss applications of the AR approximation theory to globally optimal short-term forecasting\, efficient estimation\ , and resampling inference under complex temporal dynamics.\n\nthe CRM\, R oom 6214\, Pavillon André-Aisenstadt \n\nUniversité de Montréal\n\nThe pre sentation will also be accessible using Zoom with the following informatio n:\n\n\n Meeting ID: 842 2670 1306\,\n Passcode: 692788.\n\n DTSTART:20231006T193000Z DTEND:20231006T203000Z SUMMARY:Zhou Zhou (University of Toronto) URL:/mathstat/channels/event/zhou-zhou-university-toro nto-351596 END:VEVENT END:VCALENDAR