BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250701T191634EDT-3280VjF0sk@132.216.98.100 DTSTAMP:20250701T231634Z DESCRIPTION:Title: Minimal surfaces in symmetric spaces\n\nAbstract: For S a closed surface of genus at least 2\, Labourie proved that every Hitchin representation of pi_1(S) into PSL(n\,R) gives rise to an equivariant mini mal surface in the corresponding symmetric space. He conjectured that uniq ueness holds as well (this was known for n=2\,3)\, and explained that if t rue\, then the space of Hitchin representations admits a mapping class gro up equivariant parametrization as a holomorphic vector bundle over Teichmu ller space.\n\nAfter giving the relevant background\, we will discuss the analysis and geometry of minimal surfaces in symmetric spaces\, and explai n how certain large area minimal surfaces give counterexamples to Labourie ’s conjecture.\n\nJoin Zoom Meeting\n\nhttps://us06web.zoom.us/j/831804539 14?pwd=RQnoWH7aQqXAxldXZsqdafFCmh7dBC.1\n\nMeeting ID: 831 8045 3914\n\nPa sscode: 719821\n\nWhere: CRM\, room 5340\n\nPavillon André-Aisenstadt\, Un iversité de Montréal\n\n \n DTSTART:20231006T180000Z DTEND:20231006T190000Z SUMMARY:Nathaniel Sagman (University of Luxembourg) URL:/mathstat/channels/event/nathaniel-sagman-universi ty-luxembourg-351580 END:VEVENT END:VCALENDAR