BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250812T154158EDT-8741KSEhbV@132.216.98.100 DTSTAMP:20250812T194158Z DESCRIPTION:Title: Nodal sets of monochromatic waves from a deterministic a nd random point of view\n\nAbstract:\n\nIn this talk we present recent res ults on the nodal set (i.e.\, the zero level set) of monochromatic waves ( i.e.\, solutions of the Helmholtz equation) on the Euclidean space. Follow ing the breakthrough\n\nwork of F. Nazarov and M. Sodin\, a growing litera ture gives us powerful probabilistic results for the number of connected c omponents of the nodal set of random monochromatic waves. The aim of this talk is to explore the properties of these standard random monochromatic w aves and\, consequently\, define a more general class of random monochroma tic waves depending on a parameter $s\in\mathbb{R}$\, which includes the s tandard definition as a particular case. This parameter\n\ncontrols some r egularity (of the Fourier transform) and decay properties of these waves. Given that\, we study the structure of the nodal set depending on that par ameter from a deterministic and from a\n\nrandom point of view. Finally\, we show how to construct deterministic realizations or examples of monochr omatic waves satisfying the probabilistic Nazarov-Sodin volumetric growth for the number of\n\nconnected components of the nodal set and similarly f or the volume of the nodal set. This is a joint work with A. Enciso\, D. P eralta-Salas and A. Sartori.\n\nZoom link: https://umontreal.zoom.us/j/817 06136500?pwd=UVFZeXhWd1RpY29GeE1nS2RkK0V3Zz09\n\nMeeting ID: 817 0613 6500 \n\nPasscode: 872949\n DTSTART:20220520T183000Z DTEND:20220520T193000Z SUMMARY:Álvaro Romaniega (Instituto de Ciencias Matemáticas) URL:/mathstat/channels/event/alvaro-romaniega-institut o-de-ciencias-matematicas-339604 END:VEVENT END:VCALENDAR