BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250808T154700EDT-5383idWo6z@132.216.98.100 DTSTAMP:20250808T194700Z DESCRIPTION:TITLE: Thin right-angled Coxeter subgroups of some arithmetic l attices\n\nABSTRACT: Roughly speaking\, a subgroup of a lattice in a semis imple Lie group is said to be thin if the subgroup is of infinite index in the lattice but is Zariski-dense in the Lie group. Free groups and surfac e groups have many manifestations as thin subgroups of lattices in Lie gro ups\, by classical work of Tits in the free case\, and by work of Kahn–Mar kovic\, Hamenstädt\, Long–Reid\, Kahn–Labourie–Mozes\, and others in the s urface group case. We sketch an argument that an irreducible right-angled Coxeter group on n>2 vertices embeds as a thin subgroup of an arithmetic l attice in O(p\,q) for some p\,q>0 satisfying p+q=n\, and that we can arran ge for the lattice to be cocompact\n DTSTART:20220216T200000Z DTEND:20220216T210000Z SUMMARY:Sami Douba (9IÖÆ×÷³§Ãâ·Ñ) URL:/mathstat/channels/event/sami-douba-mcgill-univers ity-337618 END:VEVENT END:VCALENDAR