BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250812T191137EDT-6833EDGNvg@132.216.98.100 DTSTAMP:20250812T231137Z DESCRIPTION: \n\nColloque des sciences mathématiques du Québec\n\n \n\nTitl e: Structure learning for Extremal graphical models\n\nAbstract:Extremal g raphical models are sparse statistical models for multivariate extreme eve nts. The underlying graph encodes conditional independencies and enables a visual interpretation of the complex extremal dependence structure. For t he important case of tree models\, we provide a data-driven methodology fo r learning the graphical structure. We show that sample versions of the ex tremal correlation and a new summary statistic\, which we call the extrema l variogram\, can be used as weights for a minimum spanning tree to consis tently recover the true underlying tree. Remarkably\, this implies that ex tremal tree models can be learned in a completely non-parametric fashion b y using simple summary statistics and without the need to assume discrete distributions\, existence of densities\, or parametric models for marginal or bivariate distributions. Extensions to more general graphs are also di scussed.\n\nZoom: https://umontreal.zoom.us/j/93983313215?pwd=clB6cUNsSjAv RmFMME1PblhkTUts...\n\nID de réunion : 939 8331 3215 \n\nCode secret : 096 952\n DTSTART:20220218T203000Z DTEND:20220218T213000Z SUMMARY:Stanislav Volgushev (University of Toronto) URL:/mathstat/channels/event/stanislav-volgushev-unive rsity-toronto-337394 END:VEVENT END:VCALENDAR