BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250703T185322EDT-1192vVUwSo@132.216.98.100 DTSTAMP:20250703T225322Z DESCRIPTION:Title: Integrable systems from a Newton polygon.\n\nAbstract: L et $P(x\,y)in mathbb C[x\,y]$ a bivariate polynomial\, written $P(x\,y)=su m_{(i\,j)in N}P_{i\,j} x^i y^j$. The polytope $Nsubset mathbb Z imes mathb b Z$ is called the Newton's polytope and its convex envelope is the Newton 's polygon. The locus of solutions $P(x\,y)=0$ in $mathbb C imes mathbb C$ is a plane curve (an immersed Riemann surface). Its geometry can be produ ced from the combinatorics of the Newton's polygon. This allows to constru ct a Baker-Akhiezer function and a Lax pair associated to $P(x\,y)$\, in o ther words an integrable system. In fact there are several integrable syst ems that can be associated to P. The easiest is the isospectral system\, f ollowing the Krichever's reconstruction method\, and the others can be see n as 'quantum' deformations. In particular we can get an isomonodromic sys tem and other deformations. We shall illustrate on the elliptic curve $P(x \,y)=y^2-x^3+g_2 x+x_3$.\n\n \n\nWeb - Please fill in this form: https://f orms.gle/S1NcNQ8BxkzfAXcj9\n DTSTART:20211207T203000Z DTEND:20211207T213000Z SUMMARY:Bertrand Eynard\, Institut de Physique Théorique\, CEA (Commissaria t à l'Energie Atomique et aux Energies Alternative) URL:/mathstat/channels/event/bertrand-eynard-institut- de-physique-theorique-cea-commissariat-lenergie-atomique-et-aux-energies-3 35385 END:VEVENT END:VCALENDAR