BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20251024T091657EDT-9669th0Ium@132.216.98.100 DTSTAMP:20251024T131657Z DESCRIPTION:Title: Higher Teichmuller and higher rank Schottky groups\n Abst ract: Schottky groups are the simplest and most classical examples of Klei nian groups\, that is\, of discrete subgroups of Mobius transformations. I will explain several generalisations of this notion to subgroups of highe r rank Lie groups. One of these generalisations leads to an explicit descr iption of positive representations of surfaces with non-empty boundary\, a type of higher Teichmuller representation introduced by Fock and Goncharo v in 2003. I will show how this description allows the construction of fun damental domains for an open domain of discontinuity in the projective spa ce or the sphere\, depending on the dimension. This talk will feature join t work with N. Treib\, F. Kassel and V. Charette.\n DTSTART:20191213T183000Z DTEND:20191213T193000Z LOCATION:Room 1104\, Burnside Hall\, CA\, QC\, Montreal\, H3A 0B9\, 805 rue Sherbrooke Ouest SUMMARY:Jean-Philippe Burelle (University of Sherbrooke) URL:/mathstat/channels/event/jean-philippe-burelle-uni versity-sherbrooke-303283 END:VEVENT END:VCALENDAR