BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20251021T204714EDT-3760kKsIR7@132.216.98.100 DTSTAMP:20251022T004714Z DESCRIPTION:Title: Some non-uniqueness results in the Calderon inverse prob lem with local or disjoint data\n Abstract: In dimension 3 or higher\, the anisotropic Calderon inverse problem amounts to recovering a Riemannian me tric on a compact connected manifold with boundary from the knowledge of t he Dirichlet to Neumann operator (modulo diffeomorphisms that fix the boun dary). In this talk\, I will prove that there is non uniqueness in the Cal deron problem when : 1) the Dirichlet and Neumann data are measured on the same proper subset of the boundary provided the metric is only Holder con tinuous. 2) the Dirichlet and Neumann data are measured on distinct subset s of the boundary (for smooth metrics). This is a joint work with N. Kamra n (9IÖÆ×÷³§Ãâ·Ñ) and F. Nicoleau (Nantes).\n \n \n  \n DTSTART:20191023T173000Z DTEND:20191023T183000Z LOCATION:Room 920\, Burnside Hall\, CA\, QC\, Montreal\, H3A 0B9\, 805 rue Sherbrooke Ouest SUMMARY:Thierry Daudé (Université de Cergy-Pontoise) URL:/mathstat/channels/event/thierry-daude-universite- de-cergy-pontoise-301863 END:VEVENT END:VCALENDAR