BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20251105T035212EST-6935pWMuUn@132.216.98.100 DTSTAMP:20251105T085212Z DESCRIPTION:Title: Classifying space for proper actions for groups admittin g a strict fundamental domain.\n\nAbstract:\n\nFor an infinite discrete gr oup G\, the classifying space for proper actions EG is a proper G-CW-compl ex X such that for every finite subgroup F⊂G the fixed point set XF is con tractible. In joint work with Nansen Petrosyan we describe a procedure of constructing new models for E––G out of the standard ones\, provided the a ction of G on EG admits a strict fundamental domain. Our construction is o f combinatorial nature\, and it depends only on the structure of the funda mental domain. The resulting model is often much 'smaller' than the old on e\, and thus it is well-suited for (co-)homological computations. Before o utlining the construction\, I shall give some background on the space EG. I will also discuss some examples and applications in the context of Coxet er groups\, graph products of finite groups\, and automorphism groups of b uildings.\n DTSTART:20181121T200000Z DTEND:20181121T210000Z LOCATION:Room 1104\, Burnside Hall\, CA\, QC\, Montreal\, H3A 0B9\, 805 rue Sherbrooke Ouest SUMMARY:Tomasz Prytuła (Max Planck Institute) URL:/mathstat/channels/event/tomasz-prytula-max-planck -institute-291816 END:VEVENT END:VCALENDAR