BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250803T130904EDT-5707Ox03Hl@132.216.98.100 DTSTAMP:20250803T170904Z DESCRIPTION:Reverse Agmon estimates for Schr\'{o}dinger eigenfunctions\n\nL et $(M\,g)$ be a compact\, Riemannian manifold and $V in C^{infty}(M\; R)$ . Given a regular energy level $E > min V$\, we consider $L^2$-normalized eigenfunctions\, $u_h\,$ of the Schrodinger operator $P(h) = - h^2 Delta_g + V - E(h)$ with $P(h) u_h = 0$ and $E(h) = E + o(1)$ as $h o 0^+.$ The w ell-known Agmon-Lithner estimates cite{Hel} are exponential decay estimate s (ie. upper bounds) for eigenfunctions in the forbidden region ${ V>E }.$ The decay rate is given in terms of the Agmon distance function $d_E$ ass ociated with the degenerate Agmon metric $(V-E)_+ \, g$ with support in th e forbidden region. Our main result is a partial converse to the Agmon est imates (ie. exponential {em lower} bounds for the eigenfunctions) in terms of Agmon distance in the forbidden region under a control assumption on e igenfunction mass in the allowable region ${ V< E }$ arbitrarily close to the caustic $ { V = E }.$ I will explain this result in my talk and then g ive some applications to hypersurface restriction bounds for eigenfunction s in the forbidden region along with corresponding nodal intersection esti mates. This is joint work with Xianchao Wu.\n DTSTART:20181123T190000Z DTEND:20181123T200000Z LOCATION:Room VCH-2810\, CA\, Université Laval SUMMARY:John Toth (9IÖÆ×÷³§Ãâ·Ñ) URL:/mathstat/channels/event/john-toth-mcgill-universi ty-291804 END:VEVENT END:VCALENDAR