BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20251105T165208EST-1896EuXUEv@132.216.98.100 DTSTAMP:20251105T215208Z DESCRIPTION:The complexity of detecting cliques and cycles in random graphs \n\nA strong form of the P ≠ NP conjecture holds that no algorithm faster than n^{O(k)} solves the k-clique problem with high probability when the i nput is an Erdös–Rényi random graph with an appropriate edge density. Towa rd this conjecture\, I will describe a line of work lower-bounding the ave rage-case complexity of k-clique (and other subgraph isomorphism problems) in weak models of computation: namely\, restricted classes of boolean cir cuits and formulas. Along the way I will discuss some of the history and c urrent frontiers in Circuit Complexity.\n \n Joint work with Ken-ichi Kawara bayashi\, Yuan Li and Alexander Razborov.\n DTSTART:20181102T200000Z DTEND:20181102T210000Z LOCATION:Room 1355\, CA\, Pav. André-Aisenstadt SUMMARY:Benjamin Rossman\, University of Toronto - Lauréat 2018 du Prix And ré-Aisenstadt URL:/mathstat/channels/event/benjamin-rossman-universi ty-toronto-laureat-2018-du-prix-andre-aisenstadt-291083 END:VEVENT END:VCALENDAR