BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20251105T090433EST-9095GXRvXs@132.216.98.100 DTSTAMP:20251105T140433Z DESCRIPTION:$SU_q(3)$ corepresentations and multivariate q-Krawtchouk polyn omials\n\nIn this talk\, an algebraic interpretation of the multivariate q uantum $q$-Krawtchouk polynomials in terms of quantum groups will be given . I will begin by reviewing the $SU_q(3)$ quantum group Hopf algebra and p resent how the symmetric corepresentations are constructed. Then\, by firs t establishing the unitarity of these corepresentations\, I will demonstra te that their matrix elements can be expressed in terms of the bivariate $ q$-Krawtchouk polynomials. Finally\, some applications of this quantum gro up interpretation will be briefly presented. (This is joint work with Erik Koelink and Luc Vinet.)\n DTSTART:20181030T193000Z DTEND:20181030T203000Z LOCATION:Room 4336\, CA\, Pav. André-Aisenstadt\, 2920\, ch. de la Tour SUMMARY:Geoffroy Bergeron\, CRM URL:/mathstat/channels/event/geoffroy-bergeron-crm-291 077 END:VEVENT END:VCALENDAR