BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250725T213153EDT-4327dkJw7O@132.216.98.100 DTSTAMP:20250726T013153Z DESCRIPTION:Sparse longitudinal modeling using matrix factorization.\n\nA c ommon problem in clinical practice is to predict disease progression from sparse observations of individual patients. The classical approach to mode ling this kind of data relies on a mixed-effect model where time is consid ered as both a fixed effect (a population trajectory) and a random effect (an individual trajectory). In our work\, we map the problem to a matrix c ompletion framework and solve it using matrix factorization techniques. Th e proposed approach does not require assumptions of the mixed-effect model and it can be naturally extended to multivariate measurements.\n \n Monsieu r Kidzinski est candidat pour un poste en apprentissage automatique au Dép artement de mathématiques et de statistique.\n DTSTART:20180423T143000Z DTEND:20180423T153000Z LOCATION:room 5340\, CA\, Pav. André-Aisenstadt\, 2920\, ch. de la Tour SUMMARY:Lukasz Kidzinski\, Stanford University URL:/mathstat/channels/event/lukasz-kidzinski-stanford -university-286736 END:VEVENT END:VCALENDAR