BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250714T040031EDT-2993IbK0VV@132.216.98.100 DTSTAMP:20250714T080031Z DESCRIPTION:Seminar Montreal Analysis Seminar\n\nUniversité de Montréal\, T ime and Room TBA\n\nIn this talk we investigate upper and lower bounds of two shape functionals involving the maximum of the torsion function. More precisely\, we consider $T(Omega)/(M(Omega)|Omega|)$ and $M(Omega)lambda_1 (Omega)$\, where $Omega$ is a bounded open set of $mathbb{R}^N$ with finit e Lebesgue measure $|Omega|$\, $M(Omega)$ denotes the maximum of the torsi on function\, (solution of $-Delta u=1$ in $Omega$\, $u=0$ on the boundary )\, $T(Omega)=int_Omega u$ $ the torsion\, and $lambda_1(Omega)$ the first Dirichlet eigenvalue. Particular attention is devoted to the subclass of convex sets.In this talk we investigate upper and lower bounds of two shap e functionals involving the maximum of the torsion function. More precisel y\, we consider $T(Omega)/(M(Omega)|Omega|)$ and $M(Omega)lambda_1(Omega)$ \, where $Omega$ is a bounded open set of $mathbb{R}^N$ with finite Lebesg ue measure $|Omega|$\, $M(Omega)$ denotes the maximum of the torsion funct ion\, (solution of $-Delta u=1$ in $Omega$\, $u=0$ on the boundary)\, $T(O mega)=int_Omega u$ $ the torsion\, and $lambda_1(Omega)$ the first Dirichl et eigenvalue. Particular attention is devoted to the subclass of convex s ets.\n DTSTART;VALUE=DATE:20180309 DTEND;VALUE=DATE:20180309 SUMMARY:Antoine Henrot\, Institut Elie Cartan de Lorraine URL:/mathstat/channels/event/antoine-henrot-institut-e lie-cartan-de-lorraine-285496 END:VEVENT END:VCALENDAR