BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250805T154224EDT-9781MEcCB9@132.216.98.100 DTSTAMP:20250805T194224Z DESCRIPTION:Sparse Penalized Quantile Regression: Method\, Theory\, and Alg orithm\n\nSparse penalized quantile regression is a useful tool for variab le selection\, robust estimation\, and heteroscedasticity detection in hig h-dimensional data analysis. We discuss the variable selection and estimat ion properties of the lasso and folded concave penalized quantile regressi on via non-asymptotic arguments. We also consider consistent parameter tun ing therein. The computational issue of the sparse penalized quantile regr ession has not yet been fully resolved in the literature\, due to non-smoo thness of the quantile regression loss function. We introduce fast alterna ting direction method of multipliers (ADMM) algorithms for computing the s parse penalized quantile regression. Numerical examples demonstrate the co mpetitive performance of our algorithm: it significantly outperforms sever al other fast solvers for high-dimensional penalized quantile regression. \n DTSTART:20180223T203000Z DTEND:20180223T213000Z LOCATION:Room 1205\, Burnside Hall\, CA\, QC\, Montreal\, H3A 0B9\, 805 rue Sherbrooke Ouest SUMMARY:Prof. Yuwen Gu Department of Statistics University of Connecticut URL:/mathstat/channels/event/prof-yuwen-gu-department- statistics-university-connecticut-285283 END:VEVENT END:VCALENDAR