BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20251221T162519EST-1997abMvFO@132.216.98.100 DTSTAMP:20251221T212519Z DESCRIPTION:The maximum of the Riemann zeta function in a short interval of the critical line.\n\nA conjecture of Fyodorov\, Hiary & Keating states t hat the maxima of the modulus of the Riemann zeta function on an interval of the critical line behave similarly to the maxima of a log-correlated pr ocess. In this talk\, we will discuss a proof of this conjecture to leadin g order\, unconditionally on the Riemann Hypothesis. We will highlight the connections between the number theory problem and the probabilistic model s including the branching random walk. We will also discuss the relations with the freezing transition for this problem. This is joint work with D. Belius (Zurich)\, P. Bourgade (NYU)\, M. Radizwill (9IÖÆ×÷³§Ãâ·Ñ)\, and K. Sound ararajan (Stanford).\n DTSTART:20180219T190000Z DTEND:20180219T200000Z LOCATION:Room 1214\, Burnside Hall\, CA\, QC\, Montreal\, H3A 0B9\, 805 rue Sherbrooke Ouest SUMMARY:Louis-Pierre Arguin\, Université de Montréal URL:/mathstat/channels/event/louis-pierre-arguin-unive rsite-de-montreal-285161 END:VEVENT END:VCALENDAR