BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250802T122452EDT-5928bFUeiA@132.216.98.100 DTSTAMP:20250802T162452Z DESCRIPTION:Discrete geometry and isotropic surfaces.\n\nWe consider smooth isotropic immersions from the 2-dimensional torus into R2n\, for g>=2. Wh en n = 2 the image of such map is an immersed Lagrangian torus of R4. We p rove that such isotropic immersions can be approximated by arbitrarily C0- close piecewise linear isotropic maps. If n >= 3 the piecewise linear isot ropic maps can be chosen so that they are piecewise linear isotropic immer sions as well. The proofs are obtained using analogies with an infinite di mensional moment map geometry due to Donaldson. As a byproduct of these co nsiderations\, we introduce a numerical flow in finite dimension\, whose l imit provide\, from an experimental perspective\, many examples of piecewi se linear Lagrangian tori in R4.\n DTSTART:20180202T160000Z DTEND:20180202T170000Z LOCATION:Room PK-5115 \, CA\, Pavillon President-Kennedy SUMMARY:Yann Rollin\, Université de Nantes URL:/mathstat/channels/event/yann-rollin-universite-de -nantes-284251 END:VEVENT END:VCALENDAR