BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250703T080420EDT-1964DjWLNm@132.216.98.100 DTSTAMP:20250703T120420Z DESCRIPTION:Higher-order Cheeger inequalities for Laplacian and Steklov eig envalues.\n\nCheeger’s inequality is a lower bound for the Laplacian’s fir st eigenvalue on a manifold depending only a geometric constant called Che eger’s constant. I will present a higher-order Cheeger inequality for comp act manifold without boundaries\, giving a lower bound for higher eigenval ues using a natural generalisation of Cheeger’s constant. This result is a dapted from the proof by Lee\, Gharan and Trevissan [1] of this inequality for the discrete Laplacian on graphs. I will also apply their methods to prove a similar inequality for Steklov eigenvalues.  \n DTSTART:20180129T190000Z DTEND:20180129T200000Z LOCATION:AA-5183\, CA\, Pav. André-Aisenstadt SUMMARY:Antoine Métras \, Université de Montréal URL:/mathstat/channels/event/antoine-metras-universite -de-montreal-284245 END:VEVENT END:VCALENDAR