BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250802T121313EDT-6224V72ZDV@132.216.98.100 DTSTAMP:20250802T161313Z DESCRIPTION:What is quantum chaos\n\nWhere do eigenfunctions of the Laplaci an concentrate as eigenvalues go to infinity? Do they equidistribute or do they concentrate in an uneven way? It turns out that the answer depends o n the nature of the geodesic flow. I will discuss various results in the c ase when the flow is chaotic: the Quantum Ergodicity theorem of Shnirelman \, Colin de Verdière\, and Zelditch\, the Quantum Unique Ergodicity conjec ture of Rudnick-Sarnak\,  the progress on it by Lindenstrauss and Soundara rajan\, and the entropy bounds of Anantharaman-Nonnenmacher. I will conclu de with a recent lower bound on the mass of eigenfunctions obtained with J in. It relies on a new tool called 'fractal uncertainty principle' develop ed in the works with Bourgain and Zahl.\n DTSTART:20180112T210000Z DTEND:20180112T220000Z LOCATION:room 6254\, CA\, Pav. André-Aisenstadt\, 2920\, ch. de la Tour SUMMARY:Semyon Dyatlov\, UC Berkeley / MIT URL:/mathstat/channels/event/semyon-dyatlov-uc-berkele y-mit-283674 END:VEVENT END:VCALENDAR