BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250716T164421EDT-7118ud6WZN@132.216.98.100 DTSTAMP:20250716T204421Z DESCRIPTION:Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space.\n\nLet S be a fixed closed (n-1)-dimensional submanifold of Euclidean space R^{n+1}. I will discuss upper and lower bounds for the Steklov eigenvalues sigma_k(M)\, where M is any compact manifold with bou ndary S. An upper bound will be given\, in term of the volume of M. This i s based on methods from metric geometry. In the particular situation where S is the unit sphere S^{n-1} (lying in a coordinate hyperplane) and M is an hypersurface of revolution\, I will prove that sigma_k(M)geq sigma_k(B^ n) with equality if and only M is the n-dimensional ball B^n. This based o n joint work with Bruno Colbois (Neuchâtel) and Katie Gittins (MPIM Bonn). \n DTSTART:20171120T190000Z DTEND:20171120T200000Z LOCATION:Room 5340\, CA\, Pav. André-Aisenstadt SUMMARY:Alexandre Girouard\, Université Laval URL:/mathstat/channels/event/alexandre-girouard-univer site-laval-282944 END:VEVENT END:VCALENDAR