BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250915T190248EDT-0136MuUD4m@132.216.98.100 DTSTAMP:20250915T230248Z DESCRIPTION:The quantum n-body problem in dimension d ≥\; n-1: the gro und state.\n\nWe employ generalized Euler coordinates for the n body syste m in d ≥ n − 1 dimensional space\, which consist of the centre-of-mass vec tor\, relative (mutual) distances r_ij and angles as remaining coordinates . We prove that the kinetic energy of the quantum n-body problem for d ≥ n − 1 can be written as the sum of three terms: (i) kinetic energy of centr e-of-mass\, (ii) the second order differential operator D_1 which depends on relative distances alone and (iii) the differential operator D_2 which annihilates any angle-independent function. The operator D_1 has a large r eflection symmetry group (a direct sum of n(n-1)/2 copies of Z_2) and in ρ _ij = r_{ij}^2 variables is the algebraic operator with hidden algebra sl( n(n−1)/2 + 1\, R). Thus\, it is the Hamiltonian of quantum Euler-Arnold sl (n(n−1)/2 + 1\, R) top in a constant magnetic field. It is conjectured tha t for any n similarity-transformed D_1 is the Laplace-Beltrami operator pl us (effective) potential\, thus\, it describes a n(n−1)/2-dimensional quan tum particle in curved space\, it was verified for n = 2\, 3\, 4. After de -quantization similarity-transformed D_1 becomes the Hamiltonian of the cl assical top with variable tensor of inertia in external potential. Work do ne with W. Miller\, Jr. and A. Escobar-Ruiz.\n\n \n\n\n  \n\n CRM\, UdeM\, P avillon André-Aisenstadt\, 2920\, ch. de la Tour\, salle 4336\n\n\n \n DTSTART:20171003T193000Z DTEND:20171003T203000Z LOCATION:Room 4336\, CA\, QC\, Montreal\, Pav. André-Aisenstadt\, 2920\, ch . de la Tour SUMMARY:Alexander Turbiner\, UNAM\, México URL:/mathstat/channels/event/alexander-turbiner-unam-m exico-270699 END:VEVENT END:VCALENDAR