BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250917T190508EDT-4545dM4nNA@132.216.98.100 DTSTAMP:20250917T230508Z DESCRIPTION:Local inverse scattering at a fixed energy for radial Schroding er operators and localization of the Regge poles. \n\nAbstract: We study i nverse scattering problems at a fixed energy for radial Schrodinger operat ors on $\R^n$\, $n \geq 2$. First\, we consider the class $\mathcal{A}$ of potentials $q(r)$ which can be extended analytically in $\Re z \geq 0$ su ch that $\mid q(z)\mid \leq C \ (1+ \mid z \mid )^{-\rho}$\, $\rho > \frac {3}{2}$. If $q$ and $\tilde{q}$ are two such potentials and if the corresp onding phase shifts $\delta_l$ and $\tilde{\delta}_l$ are super-exponentia lly close\, then $q=\tilde{q}$. Secondly\, we study the class of potential s $q(r)$ which can be split into $q(r)=q_1(r) + q_2(r)$ such that $q_1(r)$ has compact support and $q_2 (r) \in \mathcal{A}$. If $q$ and $\tilde{q}$ are two such potentials\, we show that for any fixed $a>0$\, ${\ds{\delta _l - \tilde{\delta}_l \ = \ o \left( \frac{1}{l^{n-3}} \ \left( {\frac{ae} {2l}}\right)^{2l}\right)}}$ when $l \rightarrow +\infty$ if and only if $q (r)=\tilde{q}(r)$ for almost all $r \geq a$. The proofs are close in spiri t with the celebrated Borg-Marchenko uniqueness theorem\, and rely heavily on the localization of the Regge poles. This is a joint work with Thierry Daude (Universite de Cergy-Pontoise).\n\n \n DTSTART:20170616T173000Z DTEND:20170616T183000Z LOCATION:room 1214\, Burnside Hall\, CA\, QC\, Montreal\, H3A 0B9\, 805 rue Sherbrooke Ouest SUMMARY:Francois Nicoleau (Nantes) URL:/mathstat/channels/event/francois-nicoleau-nantes- 268545 END:VEVENT END:VCALENDAR