BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250717T230632EDT-6623tSvP31@132.216.98.100 DTSTAMP:20250718T030632Z DESCRIPTION:On finite simple images of triangle groups\n\nGiven a triple (a \, b\, c) of positive integers\, a finite group is said to be an (a\, b\, c)-group if it is a quotient of the triangle group Ta\,b\,c = hx\, y\, z : x a = y b = z c = xyz = 1i. Let G0 = G(p r ) be a finite quasisimple grou p of Lie type with corresponding simple algebraic group G. Given a positiv e integer a\, let G[a] = {g ∈ G : g a = 1} be the subvariety of G consisti ng of elements of order dividing a\, and set ja(G) = dim G[a] . Given a tr iple (a\, b\, c) of positive integers\, we conjectured a few years ago tha t if ja(G) +jb(G) +jc(G) = 2 dim G then given a prime p there are only fin itely many positive integers r such that G(p r ) is an (a\, b\, c)-group. We present some recent progress on this conjecture and related results: in particular the conjecture holds for finite simple groups.\n DTSTART:20170510T144500Z DTEND:20170510T144500Z LOCATION:Room 920\, Burnside Hall\, CA\, QC\, Montreal\, H3A 0B9\, 805 rue Sherbrooke Ouest SUMMARY:Claude Marion\, University of Padova URL:/mathstat/channels/event/claude-marion-university- padova-268019 END:VEVENT END:VCALENDAR